完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, RSen_US
dc.contributor.authorTzeng, GHen_US
dc.contributor.authorChen, CCen_US
dc.contributor.authorHu, YCen_US
dc.date.accessioned2014-12-08T15:26:40Z-
dc.date.available2014-12-08T15:26:40Z-
dc.date.issued2001en_US
dc.identifier.isbn0-7695-1165-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/18958-
dc.description.abstractIn this paper we propose the Fuzzy Grids Based Sequential Patterns Mining Algorithm (FGBSPMA) to generate all fuzzy sequential patterns from relational database. In FGBSPMA, each quantitative attribute is viewed as a linguistic variable, and can be divided into many candidate 1-dim fuzzy grids. FGBSPMA is consisted of two phases: one is to generate all the large 1-fuzzy sequences, the other is to generate all the fuzzy sequential patterns. FGBSPMA is a efficiently fuzzy sequential patterns mining algorithm, because FGBSPMA scans database only once and applies proper operations on rows of tables to generate large fuzzy sequences and fuzzy sequential patterns. An example is given to illustrate a detailed process for mining the fuzzy sequential patterns from a specified relation. From this example, we can show efficiency and usefulness of FGBSPMA.en_US
dc.language.isoen_USen_US
dc.subjectdata miningen_US
dc.subjectdatabaseen_US
dc.subjectfuzzy sequential patternsen_US
dc.subjectfuzzy partitionsen_US
dc.subjectknowledge acquisitionen_US
dc.titleDiscovery of fuzzy sequential patterns for fuzzy partitions in quantitative attributesen_US
dc.typeProceedings Paperen_US
dc.identifier.journalACS/IEEE INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, PROCEEDINGSen_US
dc.citation.spage144en_US
dc.citation.epage150en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000171223600024-
顯示於類別:會議論文