完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, GDen_US
dc.contributor.authorLin, CTen_US
dc.date.accessioned2014-12-08T15:26:51Z-
dc.date.available2014-12-08T15:26:51Z-
dc.date.issued2001en_US
dc.identifier.isbn0-7803-7078-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/19106-
dc.description.abstractThis paper addresses the problem of automatic word boundary detection in the presence of variable-level background noise. Commonly used algorithms for word boundary detection always assume that the background noise level is fixed. In fact, the background noise level may vary during the procedure of recording. In order to solve this problem, we propose the RTF-MiFre-based RSONFIN (a recurrent neural fuzzy network) algorithm. Since the RTF and MiFre parameters can extract useful frequency energy and RSONFIN can process the temporal relations, this RTF-MiFre-based RSONFIN algorithm can find the variation of the background noise level and detect correct word boundaries in the presence of variable background noise level. Our experiment results have shown that the RTF-MiFre-based RSONFIN algorithm has good performance in the presence of variable background noise level presence.en_US
dc.language.isoen_USen_US
dc.subjectbackground noise levelen_US
dc.subjectrecurrent neural fuzzy networken_US
dc.subjecttemporal relationsen_US
dc.titleNoisy speech segmentation with multiband analysis and recurrent neural fuzzy networken_US
dc.typeProceedings Paperen_US
dc.identifier.journalJOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5en_US
dc.citation.spage540en_US
dc.citation.epage544en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000173245100095-
顯示於類別:會議論文