完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, YCen_US
dc.contributor.authorChien, CJen_US
dc.contributor.authorTeng, CCen_US
dc.date.accessioned2014-12-08T15:26:54Z-
dc.date.available2014-12-08T15:26:54Z-
dc.date.issued2001en_US
dc.identifier.isbn0-7803-7293-Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/19136-
dc.description.abstractIn this paper, we propose a Takagi-Sugeno recurrent fuzzy neural networks (TSRFNN) for identification and control nonlinear dynamic systems. The TSRFNN combines the recurrent multilayered connectionist network with dynamic Takagi-Sugeno (TS) fuzzy model. The temporal information are embedded in the recurrent structure by adding feedback connections between the states layer and inputs layer of the fuzzy neural networks (FNN). Based on the derived dynamic backpropagation (DBP) and recursive least squares (RLS) algorithms, the parameters in the TSRFNN are on-line adjusted. Compared with the traditional recurrent fuzzy neural networks (RFNN), the proposed TSRFNN has not only a smaller network structure and a smaller number of network parameters, but also a fast convergence speed and a better learning performance.en_US
dc.language.isoen_USen_US
dc.titleTakagi-Sugeno recurrent fuzzy neural networks for identification and control of dynamic systemsen_US
dc.typeProceedings Paperen_US
dc.identifier.journal10TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3: MEETING THE GRAND CHALLENGE: MACHINES THAT SERVE PEOPLEen_US
dc.citation.spage537en_US
dc.citation.epage540en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000178178300134-
顯示於類別:會議論文