Title: Film characterization and evaluation of process performance for the modified electron beam resist
Authors: Ko, FH
Ting, JH
Chou, CT
Hsiao, LT
Huang, TY
Dai, BT
奈米中心
Nano Facility Center
Keywords: resist modification;resist characterization;thermal analysis;resist stripping performance
Issue Date: 2000
Abstract: The modification of the electron beam resist by spiking with various amounts of poly(styrene-co-maleic anhydride) copolymer is performed. The characterization of resist solutions by gel permeation chromatography (GPC) and viscosity measurement reveals the main polymer chain in the resist is unchangeable, irrespective of the amount of modification. In addition, the spiking copolymer exists in original form. The viscosity of the resist increases with the amount of spiking polymer. Our thermal analysis results show that the resists are mainly decomposed in two regions (280 and 544 degrees C). The mass loss at 280 degrees C is significant higher than at 544 degrees C. The spectra of Fourier transform infrared red (FTIR) spectrometer indicate the extent of carbonate group decomposition decreases with temperature for resists. The plasma etching experiment indicates the promotion of etching resistance of the resist film is due to modification, while the resolution, sensitivity and contrast are not degraded. Owing to the polymer aggregation effect, the stripping performance of the resist film can achieve better after copolymer modification.
URI: http://hdl.handle.net/11536/19167
http://dx.doi.org/10.1117/12.388268
ISBN: 0-8194-3617-8
ISSN: 0277-786X
DOI: 10.1117/12.388268
Journal: ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XVII, PTS 1 AND 2
Volume: 3999
Begin Page: 1046
End Page: 1055
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000088786500105.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.