完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, MYen_US
dc.contributor.authorLee, SYen_US
dc.date.accessioned2014-12-08T15:27:15Z-
dc.date.available2014-12-08T15:27:15Z-
dc.date.issued1998en_US
dc.identifier.isbn0-7803-5214-9en_US
dc.identifier.issn1082-3409en_US
dc.identifier.urihttp://hdl.handle.net/11536/19480-
dc.description.abstractMining of sequential patterns in a transactional database is time-consuming due to its complexity. Maintaining present patterns is a non-trivial task after database update, since appended data sequences may invalidate old patterns and create new ones. In contrast to re-mining, the key to improve mining performance in the proposed incremental update algorithm is to effectively utilize the discovered knowledge. By counting over appended data sequences instead of the entire updated database in most cases fast filtering of patterns found in last mining and successive reductions in candidate sequences together make Efficient update on sequential patterns possible.en_US
dc.language.isoen_USen_US
dc.titleIncremental update on sequential patterns in large databasesen_US
dc.typeProceedings Paperen_US
dc.identifier.journalTENTH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGSen_US
dc.citation.spage24en_US
dc.citation.epage31en_US
dc.contributor.department資訊科學與工程研究所zh_TW
dc.contributor.departmentInstitute of Computer Science and Engineeringen_US
dc.identifier.wosnumberWOS:000079563400004-
顯示於類別:會議論文