完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, YJen_US
dc.contributor.authorLin, CTen_US
dc.date.accessioned2014-12-08T15:27:15Z-
dc.date.available2014-12-08T15:27:15Z-
dc.date.issued1998en_US
dc.identifier.isbn0-7803-4778-1en_US
dc.identifier.issn1062-922Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/19490-
dc.description.abstractThis paper proposes Range Kutta Neural Networks (RKNNs) for identification of continuous-time nonlinear systems.(1) These networks are constructed according to the Runge Kutta approximation method. The RKNNs can thus precisely model continuous-line systems and do long-term prediction of system state trajectories. Since the RKNNs model continuous-time systems, they can incorporate available continuous relationship (physical laws) of the identified systems into their structures directly. Also, they are insensitive to the size of sampling interval in prediction. We also show theoretically the superior generalization and long-term prediction capability of the RKNNs over the normal neural networks. A class of novel recursive least square (RLS) algorithms, called nonlinear recursive least square (NRLS) learning algorithms, are developed for the RKNNs. Computer simulations demonstrate the proved properties of the RKNNs.en_US
dc.language.isoen_USen_US
dc.titleRunge Kutta Neural Network for identification of continuous systemsen_US
dc.typeProceedings Paperen_US
dc.identifier.journal1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5en_US
dc.citation.spage3277en_US
dc.citation.epage3282en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000077033700571-
顯示於類別:會議論文