Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, JYen_US
dc.contributor.authorChen, JLen_US
dc.date.accessioned2014-12-08T15:27:15Z-
dc.date.available2014-12-08T15:27:15Z-
dc.date.issued1998en_US
dc.identifier.isbn0-7803-4778-1en_US
dc.identifier.issn1062-922Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/19491-
dc.description.abstractIn this paper, we propose a modified singlelayer perceptron (MSLP) segmentation network for object extraction. We select a sigmoid gray level transfer function from the histogram of the input image and map the input gray levels into the interval [0, 1]. Then we adopt the linear index of fuzziness of the output nodes as the error function of the image segmentation system to incorporate the learning capability of a neural network. Our scheme can successfully extract multiple objects with different gray levels. To further enhance the capability of the segmentation system, the proposed network is incorporated with fuzzy if-then rules to adaptively adjust the threshold of the activation function of the output neuron for best matching the local characteristics of the image. Fuzzy if-then rules involving the edge intensities and vertical positions of pixels are reasoned to determine the threshold adaptively. From the result of segmenting the forward looking infrared (FLIR) image, a better segmentation image has been obtained by incorporating fuzzy if-then rules with the MSLP segmentation technique.en_US
dc.language.isoen_USen_US
dc.titleFuzzy-logic-based modified single-layer perceptron segmentation networken_US
dc.typeProceedings Paperen_US
dc.identifier.journal1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5en_US
dc.citation.spage3283en_US
dc.citation.epage3288en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000077033700572-
Appears in Collections:Conferences Paper