完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Liu, CS | en_US |
dc.contributor.author | Tseng, CH | en_US |
dc.date.accessioned | 2014-12-08T15:27:19Z | - |
dc.date.available | 2014-12-08T15:27:19Z | - |
dc.date.issued | 1998 | en_US |
dc.identifier.isbn | 0-7803-5214-9 | en_US |
dc.identifier.issn | 1082-3409 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/19566 | - |
dc.description.abstract | A two-level learning algorithm that decomposes multilayer neural networks into a set of sub-networks is presented. A lot of popular optimization methods, such as conjugate-gradient and quasi-Neurton methods, cart be utilized to train these sub-networks. In addition, if the activation functions are hard-limiting functions, the multilayer neural networks can be trained by the perceptron learning rule in this two-level learning algorithm. Two experimental problems are given as examples for this algorithm. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Two-level learning algorithm for multilayer neural networks | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | TENTH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS | en_US |
dc.citation.spage | 97 | en_US |
dc.citation.epage | 102 | en_US |
dc.contributor.department | 機械工程學系 | zh_TW |
dc.contributor.department | Department of Mechanical Engineering | en_US |
dc.identifier.wosnumber | WOS:000079563400013 | - |
顯示於類別: | 會議論文 |