完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Young, KY | en_US |
dc.contributor.author | Wang, JK | en_US |
dc.date.accessioned | 2014-12-08T15:27:24Z | - |
dc.date.available | 2014-12-08T15:27:24Z | - |
dc.date.issued | 1997 | en_US |
dc.identifier.isbn | 0-7803-4187-2 | en_US |
dc.identifier.issn | 0191-2216 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/19645 | - |
dc.description.abstract | Learning controllers are usually subordinate to conventional controllers in governing multiple-joint robot motion, in spite of their ability to generalize, because learning-space complexity and motion variety require them to consume exccessive amount of memory. We propose using a Fuzzy Neural Network (FNN) to learn and analyze robot motions so they can be classified according to similarity. After classification, the learning controller can then be designed to govern robot motions according to their similarities without consuming excessive memory resources. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Similarity analysis for robot motions using an FNN learning mechanism | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5 | en_US |
dc.citation.spage | 2523 | en_US |
dc.citation.epage | 2528 | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
dc.contributor.department | Institute of Electrical and Control Engineering | en_US |
dc.identifier.wosnumber | WOS:000072164400496 | - |
顯示於類別: | 會議論文 |