完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYoung, KYen_US
dc.contributor.authorWang, JKen_US
dc.date.accessioned2014-12-08T15:27:24Z-
dc.date.available2014-12-08T15:27:24Z-
dc.date.issued1997en_US
dc.identifier.isbn0-7803-4187-2en_US
dc.identifier.issn0191-2216en_US
dc.identifier.urihttp://hdl.handle.net/11536/19645-
dc.description.abstractLearning controllers are usually subordinate to conventional controllers in governing multiple-joint robot motion, in spite of their ability to generalize, because learning-space complexity and motion variety require them to consume exccessive amount of memory. We propose using a Fuzzy Neural Network (FNN) to learn and analyze robot motions so they can be classified according to similarity. After classification, the learning controller can then be designed to govern robot motions according to their similarities without consuming excessive memory resources.en_US
dc.language.isoen_USen_US
dc.titleSimilarity analysis for robot motions using an FNN learning mechanismen_US
dc.typeProceedings Paperen_US
dc.identifier.journalPROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5en_US
dc.citation.spage2523en_US
dc.citation.epage2528en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000072164400496-
顯示於類別:會議論文