完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, KYen_US
dc.date.accessioned2014-12-08T15:27:26Z-
dc.date.available2014-12-08T15:27:26Z-
dc.date.issued1997en_US
dc.identifier.isbn0-7803-3837-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/19700-
dc.description.abstractThe neural network of the unsupervised generalized Hebbian algorithm (GHA) is adopted to find the principal eigenvectors of a covariance matrix in different kinds of seismograms. The theorem about the effect of adding one extra point along the direction of the eigenvector is proposed to help the interpretations that more uniform data vectors along one principal eigenvector direction can enhance the eigenvalue. Diffraction pattern, fault pattern, bright spot pattern and real seismogram are in the experiments. From analyses the principal components can show the high amplitude, polarity reversal, and low frequency wavelet in the detection of seismic anamalies and can improve seismic interpretations.en_US
dc.language.isoen_USen_US
dc.titleNeural computing for seismic principal components analysisen_US
dc.typeProceedings Paperen_US
dc.identifier.journalIGARSS '97 - 1997 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS I-IV: REMOTE SENSING - A SCIENTIFIC VISION FOR SUSTAINABLE DEVELOPMENTen_US
dc.citation.spage1196en_US
dc.citation.epage1198en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1997BJ48Y00360-
顯示於類別:會議論文