完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Chun-Lingen_US
dc.contributor.authorTseng, Frank S. C.en_US
dc.contributor.authorLiang, Tyneen_US
dc.date.accessioned2014-12-08T15:27:38Z-
dc.date.available2014-12-08T15:27:38Z-
dc.date.issued2011-09-01en_US
dc.identifier.issn0219-1377en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10115-010-0364-2en_US
dc.identifier.urihttp://hdl.handle.net/11536/19892-
dc.description.abstractWith the rapid growth of text documents, document clustering technique is emerging for efficient document retrieval and better document browsing. Recently, some methods had been proposed to resolve the problems of high dimensionality, scalability, accuracy, and meaningful cluster labels by using frequent itemsets derived from association rule mining for clustering documents. In order to improve the quality of document clustering results, we propose an effective Fuzzy Frequent Itemset-based Document Clustering (F(2)IDC) approach that combines fuzzy association rule mining with the background knowledge embedded in WordNet. A term hierarchy generated from WordNet is applied to discover generalized frequent itemsets as candidate cluster labels for grouping documents. We have conducted experiments to evaluate our approach on Classic4, Re0, R8, and WebKB datasets. Our experimental results show that our proposed approach indeed provide more accurate clustering results than prior influential clustering methods presented in recent literature.en_US
dc.language.isoen_USen_US
dc.subjectFuzzy association rule miningen_US
dc.subjectText miningen_US
dc.subjectDocument clusteringen_US
dc.subjectFrequent itemsetsen_US
dc.subjectWordNeten_US
dc.titleAn integration of fuzzy association rules and WordNet for document clusteringen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10115-010-0364-2en_US
dc.identifier.journalKNOWLEDGE AND INFORMATION SYSTEMSen_US
dc.citation.volume28en_US
dc.citation.issue3en_US
dc.citation.spage687en_US
dc.citation.epage708en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000294229000009-
dc.citation.woscount12-
顯示於類別:期刊論文


文件中的檔案:

  1. 000294229000009.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。