完整後設資料紀錄
DC 欄位語言
dc.contributor.authorCHIANG, STen_US
dc.contributor.authorLIU, DIen_US
dc.contributor.authorLEE, ACen_US
dc.contributor.authorCHIENG, WHen_US
dc.date.accessioned2014-12-08T15:03:27Z-
dc.date.available2014-12-08T15:03:27Z-
dc.date.issued1995-04-01en_US
dc.identifier.issn0890-6955en_US
dc.identifier.urihttp://hdl.handle.net/11536/1991-
dc.description.abstractIn this paper, we propose an architecture with two different kinds of neural networks for on-line determination of optimal cutting conditions. A back-propagation network with three inputs and four outputs is used to model the cutting process. A second network, which parallelizes the augmented Lagrange multiplier algorithm, determines the corresponding optimal cutting parameters by maximizing the material removal rate according to appropriate operating constraints. Due to its parallelism, this architecture can greatly reduce processing time and make real-time control possible. Numerical simulations and a series of experiments are conducted on end milling to confirm the feasibility of this architecture.en_US
dc.language.isoen_USen_US
dc.titleADAPTIVE-CONTROL OPTIMIZATION IN END MILLING USING NEURAL NETWORKSen_US
dc.typeArticleen_US
dc.identifier.journalINTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTUREen_US
dc.citation.volume35en_US
dc.citation.issue4en_US
dc.citation.spage637en_US
dc.citation.epage660en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:A1995QA51500010-
dc.citation.woscount7-
顯示於類別:期刊論文


文件中的檔案:

  1. A1995QA51500010.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。