Full metadata record
DC FieldValueLanguage
dc.contributor.authorJANG, JSRen_US
dc.contributor.authorSUN, CTen_US
dc.date.accessioned2014-12-08T15:03:29Z-
dc.date.available2014-12-08T15:03:29Z-
dc.date.issued1995-03-01en_US
dc.identifier.issn0018-9219en_US
dc.identifier.urihttp://dx.doi.org/10.1109/5.364486en_US
dc.identifier.urihttp://hdl.handle.net/11536/2013-
dc.description.abstractFundamental and advanced developments in neuro-fuzzy synergisms for modeling and control are reviewed. The essential part of neuro-fuzzy synergisms comes from a common framework called adaptive networks, which unifies both neural networks and fuzzy models. The fuzzy models under the framework of adaptive networks is called Adaptive-Network-based Fuzzy Inference System (ANFIS), which possess certain advantages over neural networks. We introduce the design methods for ANFIS in both modeling and control applications. Current problems and future directions for neuro-fuzzy approaches are also addressed.en_US
dc.language.isoen_USen_US
dc.subjectFUZZY LOGICen_US
dc.subjectNEURAL NETWORKSen_US
dc.subjectFUZZY MODELINGen_US
dc.subjectNEURO-FUZZY MODELINGen_US
dc.subjectNEURO-FUZZY CONTROLen_US
dc.subjectANFISen_US
dc.titleNEURO-FUZZY MODELING AND CONTROLen_US
dc.typeReviewen_US
dc.identifier.doi10.1109/5.364486en_US
dc.identifier.journalPROCEEDINGS OF THE IEEEen_US
dc.citation.volume83en_US
dc.citation.issue3en_US
dc.citation.spage378en_US
dc.citation.epage406en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1995QJ99800003-
dc.citation.woscount783-
Appears in Collections:Articles


Files in This Item:

  1. A1995QJ99800003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.