完整后设资料纪录
DC 栏位 | 值 | 语言 |
---|---|---|
dc.contributor.author | JANG, JSR | en_US |
dc.contributor.author | SUN, CT | en_US |
dc.date.accessioned | 2014-12-08T15:03:29Z | - |
dc.date.available | 2014-12-08T15:03:29Z | - |
dc.date.issued | 1995-03-01 | en_US |
dc.identifier.issn | 0018-9219 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1109/5.364486 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/2013 | - |
dc.description.abstract | Fundamental and advanced developments in neuro-fuzzy synergisms for modeling and control are reviewed. The essential part of neuro-fuzzy synergisms comes from a common framework called adaptive networks, which unifies both neural networks and fuzzy models. The fuzzy models under the framework of adaptive networks is called Adaptive-Network-based Fuzzy Inference System (ANFIS), which possess certain advantages over neural networks. We introduce the design methods for ANFIS in both modeling and control applications. Current problems and future directions for neuro-fuzzy approaches are also addressed. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | FUZZY LOGIC | en_US |
dc.subject | NEURAL NETWORKS | en_US |
dc.subject | FUZZY MODELING | en_US |
dc.subject | NEURO-FUZZY MODELING | en_US |
dc.subject | NEURO-FUZZY CONTROL | en_US |
dc.subject | ANFIS | en_US |
dc.title | NEURO-FUZZY MODELING AND CONTROL | en_US |
dc.type | Review | en_US |
dc.identifier.doi | 10.1109/5.364486 | en_US |
dc.identifier.journal | PROCEEDINGS OF THE IEEE | en_US |
dc.citation.volume | 83 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 378 | en_US |
dc.citation.epage | 406 | en_US |
dc.contributor.department | 资讯工程学系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:A1995QJ99800003 | - |
dc.citation.woscount | 783 | - |
显示于类别: | Articles |
文件中的档案:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.