完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHu, Yuh-Jyhen_US
dc.contributor.authorKu, Tien-Hsiungen_US
dc.date.accessioned2014-12-08T15:28:15Z-
dc.date.available2014-12-08T15:28:15Z-
dc.date.issued2012-10-01en_US
dc.identifier.issn0010-4825en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.compbiomed.2012.08.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/20460-
dc.description.abstractUnlike previous research on patient controlled analgesia, this study explores patient demand behavior over time. We apply clustering methods to disclose demand patterns among patients over the first 24 h of analgesic medication after surgery. We consider demographic, biomedical, and surgery-related data in statistical analyses to determine predictors for patient demand behavior, and use stepwise regression and Bayes risk analysis to evaluate the influence of demand pattern on analgesic requirements. We identify three demand patterns from 1655 patient controlled analgesia request log files. Statistical tests show correlations of gender (p=.0022), diastolic blood pressure (p =.025), surgery type (p =.0028), and surgical duration (p <.0095) with demand patterns. Stepwise regression and Bayes risk analysis show demand pattern plays the most important role in analgesic consumption prediction (p=0.E+0). This study suggests analgesia request patterns over time exist among patients, and clustering can disclose demand behavioral patterns. (C) 2012 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectPatient controlled analgesiaen_US
dc.subjectPain managementen_US
dc.subjectPCA demanden_US
dc.subjectBehavioral patternen_US
dc.subjectClusteringen_US
dc.titlePattern discovery from patient controlled analgesia demand behavioren_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.compbiomed.2012.08.002en_US
dc.identifier.journalCOMPUTERS IN BIOLOGY AND MEDICINEen_US
dc.citation.volume42en_US
dc.citation.issue10en_US
dc.citation.spage1005en_US
dc.citation.epage1011en_US
dc.contributor.department分子醫學與生物工程研究所zh_TW
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentInstitute of Molecular Medicine and Bioengineeringen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000309847900007-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000309847900007.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。