Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Kuen-Tyngen_US
dc.contributor.authorWang, Yi-Weien_US
dc.contributor.authorChen, Chiung-Tongen_US
dc.contributor.authorHo, Chun-Mingen_US
dc.contributor.authorSu, Wen-Huien_US
dc.contributor.authorJou, Yuh-Shanen_US
dc.date.accessioned2014-12-08T15:28:19Z-
dc.date.available2014-12-08T15:28:19Z-
dc.date.issued2012-09-01en_US
dc.identifier.issn1078-0432en_US
dc.identifier.urihttp://dx.doi.org/10.1158/1078-0432.CCR-12-0633en_US
dc.identifier.urihttp://hdl.handle.net/11536/20481-
dc.description.abstractPurpose: Histone deacetylase inhibitors (HDACi) are actively explored as new-generation epigenetic drugs but have low efficacy in cancer monotherapy. To reveal new mechanism for combination therapy, we show that HDACi induce cell death but simultaneously activate tumor-progressive genes to ruin therapeutic efficacy. Combined treatments to target tumorigenesis and HDACi-activated metastasis with low toxic modalities could develop new strategies for long-term cancer therapy. Experimental Design: Because metastasis is the major cause of cancer mortality, we measured cell migration activity and profiled metastasis-related gene expressions in HDACi-treated cancer cells. We developed low toxic combination modalities targeting tumorigenesis and HDACi-activated metastasis for preclinical therapies in mice. Results: We showed that cell migration activity was dramatically and dose dependently enhanced by various classes of HDACi treatments in 13 of 30 examined human breast, gastric, liver, and lung cancer cell lines. Tumor metastasis was also enhanced in HDACi-treated mice. HDACi treatments activated multiple PKCs and downstream substrates along with upregulated proapoptotic p21. For targeting tumorigenesis and metastasis with immediate clinical impact, we showed that new modalities of HDACi combined drugs with PKC inhibitory agent, curcumin or tamoxifen, not only suppressed HDACi-activated tumor progressive proteins and cell migration in vitro but also inhibited tumor growth and metastasis in vivo. Conclusion: Treatments of different structural classes of HDACi simultaneously induced cell death and promoted cell migration and metastasis in multiple cancer cell types. Suppression of HDACi-induced PKCs leads to development of low toxic and long-term therapeutic strategies to potentially treat cancer as a chronic disease. Clin Cancer Res; 18(17); 4691-701. (C)2012 AACR.en_US
dc.language.isoen_USen_US
dc.titleHDAC Inhibitors Augmented Cell Migration and Metastasis through Induction of PKCs Leading to Identification of Low Toxicity Modalities for Combination Cancer Therapyen_US
dc.typeArticleen_US
dc.identifier.doi10.1158/1078-0432.CCR-12-0633en_US
dc.identifier.journalCLINICAL CANCER RESEARCHen_US
dc.citation.volume18en_US
dc.citation.issue17en_US
dc.citation.spage4691en_US
dc.citation.epage4701en_US
dc.contributor.department生物資訊及系統生物研究所zh_TW
dc.contributor.departmentInstitude of Bioinformatics and Systems Biologyen_US
dc.identifier.wosnumberWOS:000309964500024-
dc.citation.woscount17-
Appears in Collections:Articles


Files in This Item:

  1. 000309964500024.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.