完整後設資料紀錄
DC 欄位語言
dc.contributor.authorShen, Minxinen_US
dc.contributor.authorLiu, Duen-Renen_US
dc.contributor.authorHuang, Yu-Siangen_US
dc.date.accessioned2014-12-08T15:28:30Z-
dc.date.available2014-12-08T15:28:30Z-
dc.date.issued2012-12-01en_US
dc.identifier.issn0925-9902en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10844-012-0210-yen_US
dc.identifier.urihttp://hdl.handle.net/11536/20605-
dc.description.abstractDomain ontologies facilitate the organization, sharing and reuse of domain knowledge, and enable various vertical domain applications to operate successfully. Most methods for automatically constructing ontologies focus on taxonomic relations, such as is-kind-of and is-part-of relations. However, much of the domain-specific semantics is ignored. This work proposes a semi-unsupervised approach for extracting semantic relations from domain-specific text documents. The approach effectively utilizes text mining and existing taxonomic relations in domain ontologies to discover candidate keywords that can represent semantic relations. A preliminary experiment on the natural science domain (Taiwan K9 education) indicates that the proposed method yields valuable recommendations. This work enriches domain ontologies by adding distilled semantics.en_US
dc.language.isoen_USen_US
dc.subjectOntology learningen_US
dc.subjectRelation extractionen_US
dc.subjectSemantic relationen_US
dc.subjectText miningen_US
dc.titleExtracting semantic relations to enrich domain ontologiesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10844-012-0210-yen_US
dc.identifier.journalJOURNAL OF INTELLIGENT INFORMATION SYSTEMSen_US
dc.citation.volume39en_US
dc.citation.issue3en_US
dc.citation.spage749en_US
dc.citation.epage761en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000311029800008-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000311029800008.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。