完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Chi-Hsuen_US
dc.contributor.authorHung, Kun-Nengen_US
dc.date.accessioned2014-12-08T15:28:31Z-
dc.date.available2014-12-08T15:28:31Z-
dc.date.issued2012-11-01en_US
dc.identifier.issn1561-8625en_US
dc.identifier.urihttp://dx.doi.org/10.1002/asjc.495en_US
dc.identifier.urihttp://hdl.handle.net/11536/20630-
dc.description.abstractThe high-order Hopfield-based neural network (HOHNN) with functional link net (FLN) has been developed in this paper for the purpose of uncertain dynamic system identification. In comparison with the traditional Hopfield neural network (HNN) and the high-order neural network (HONN), the compact structure of FLN, with a systematic order mathematical representation combined into the proposed HOHNN, has additional inputs for each neuron for faster convergence rate and less computational load. The weighting factors in HOHNN are tuned via the Lyapunov stability theorem to guarantee the convergence performance of real-time system identification. The robust learning analysis of HOHNN to improve the convergence in the performance is also discussed. The simulation results and computation analysis for different Hopfield-based neural networks are conducted to show the effectiveness of HOHNN in uncertain dynamic system identification.en_US
dc.language.isoen_USen_US
dc.subjectHopfield neural networken_US
dc.subjectsystem identificationen_US
dc.subjectfunctional link neten_US
dc.subjectLyapunov theoremen_US
dc.subjectrobust learning analysisen_US
dc.titleDYNAMIC SYSTEM IDENTIFICATION USING HIGH-ORDER HOPFIELD-BASED NEURAL NETWORK (HOHNN)en_US
dc.typeArticleen_US
dc.identifier.doi10.1002/asjc.495en_US
dc.identifier.journalASIAN JOURNAL OF CONTROLen_US
dc.citation.volume14en_US
dc.citation.issue6en_US
dc.citation.spage1553en_US
dc.citation.epage1566en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000311711500009-
dc.citation.woscount4-
顯示於類別:期刊論文