Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hashimoto, Ki-ichiro | en_US |
dc.contributor.author | Long, Ling | en_US |
dc.contributor.author | Yang, Yifan | en_US |
dc.date.accessioned | 2014-12-08T15:28:34Z | - |
dc.date.available | 2014-12-08T15:28:34Z | - |
dc.date.issued | 2012-11-01 | en_US |
dc.identifier.issn | 0933-7741 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1515/FORM.2011.102 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/20665 | - |
dc.description.abstract | Let p be a prime congruent to 1 or 3 modulo 8 so that the equation p = a(2) + 2b(2) is solvable in integers. In this paper, we obtain closed-form expressions for a and b in terms of Jacobsthal sums. This is analogous to a classical identity of Jacobsthal. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Jacobsthal sum | en_US |
dc.subject | hyperelliptic curve | en_US |
dc.subject | L-function | en_US |
dc.title | Jacobsthal identity for Q(root-2) | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1515/FORM.2011.102 | en_US |
dc.identifier.journal | FORUM MATHEMATICUM | en_US |
dc.citation.volume | 24 | en_US |
dc.citation.issue | 6 | en_US |
dc.citation.spage | 1225 | en_US |
dc.citation.epage | 1238 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000310692600004 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |