Full metadata record
DC FieldValueLanguage
dc.contributor.authorHashimoto, Ki-ichiroen_US
dc.contributor.authorLong, Lingen_US
dc.contributor.authorYang, Yifanen_US
dc.date.accessioned2014-12-08T15:28:34Z-
dc.date.available2014-12-08T15:28:34Z-
dc.date.issued2012-11-01en_US
dc.identifier.issn0933-7741en_US
dc.identifier.urihttp://dx.doi.org/10.1515/FORM.2011.102en_US
dc.identifier.urihttp://hdl.handle.net/11536/20665-
dc.description.abstractLet p be a prime congruent to 1 or 3 modulo 8 so that the equation p = a(2) + 2b(2) is solvable in integers. In this paper, we obtain closed-form expressions for a and b in terms of Jacobsthal sums. This is analogous to a classical identity of Jacobsthal.en_US
dc.language.isoen_USen_US
dc.subjectJacobsthal sumen_US
dc.subjecthyperelliptic curveen_US
dc.subjectL-functionen_US
dc.titleJacobsthal identity for Q(root-2)en_US
dc.typeArticleen_US
dc.identifier.doi10.1515/FORM.2011.102en_US
dc.identifier.journalFORUM MATHEMATICUMen_US
dc.citation.volume24en_US
dc.citation.issue6en_US
dc.citation.spage1225en_US
dc.citation.epage1238en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000310692600004-
dc.citation.woscount0-
Appears in Collections:Articles