Full metadata record
DC FieldValueLanguage
dc.contributor.authorVasudevan, Rama K.en_US
dc.contributor.authorLiu, Yunyaen_US
dc.contributor.authorLi, Jiangyuen_US
dc.contributor.authorLiang, Wen-Ien_US
dc.contributor.authorKumar, Amiten_US
dc.contributor.authorJesse, Stephenen_US
dc.contributor.authorChen, Yi-Chunen_US
dc.contributor.authorChu, Ying-Haoen_US
dc.contributor.authorNagarajan, Valanooren_US
dc.contributor.authorKalinin, Sergei V.en_US
dc.date.accessioned2014-12-08T15:28:34Z-
dc.date.available2014-12-08T15:28:34Z-
dc.date.issued2011-08-01en_US
dc.identifier.issn1530-6984en_US
dc.identifier.urihttp://dx.doi.org/10.1021/nl201719wen_US
dc.identifier.urihttp://hdl.handle.net/11536/20671-
dc.description.abstractDevelopment of magnetoelectric, electromechanical, and photovoltaic devices based on mixed-phase rhombohedral-tetragonal (R-T) BiFeO(3) (BFO) systems is possible only if the control of the engineered R phase variants is realized. Accordingly, we explore the mechanism of a bias induced phase transformation in this system. Single point spectroscopy demonstrates that the T -> R transition is activated at lower voltages compared to T -> - T polarization switching. With phase field modeling, the transition is shown to be electrically driven. We further demonstrate that symmetry of formed R-phase rosettes can be broken by a proximal probe motion, allowing controlled creation of R variants with defined orientation. This approach opens a pathway to designing next-generation magnetoelectronic and data storage devices in the nanoscale.en_US
dc.language.isoen_USen_US
dc.titleNanoscale Control of Phase Variants in Strain-Engineered BiFeO(3)en_US
dc.typeArticleen_US
dc.identifier.doi10.1021/nl201719wen_US
dc.identifier.journalNANO LETTERSen_US
dc.citation.volume11en_US
dc.citation.issue8en_US
dc.citation.spage3346en_US
dc.citation.epage3354en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
Appears in Collections:Articles