完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Han-Linen_US
dc.contributor.authorHuang, Yao-Hueien_US
dc.date.accessioned2014-12-08T15:28:40Z-
dc.date.available2014-12-08T15:28:40Z-
dc.date.issued2011-08-01en_US
dc.identifier.issn0010-4825en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.compbiomed.2011.05.002en_US
dc.identifier.urihttp://hdl.handle.net/11536/20727-
dc.description.abstractIdentifying the classification rules for patients, based on a given dataset, is an important role in medical tasks. For example, the rules for estimating the likelihood of survival for patients undergoing breast cancer surgery are critical in treatment planning. Many well-known classification methods (as decision tree methods and hyper-plane methods) assume that classes can be separated by a linear function. However, these methods suffer when the boundaries between the classes are non-linear. This study presents a novel method, called DIAMOND, to induce classification rules from datasets containing non-linear interactions between the input data and the classes to be predicted. Given a set of objects with some classes, DIAMOND separates the objects into different cubes, and assigns each cube to a class. Via the unions of these cubes, DIAMOND uses mixed-integer programs to induce classification rules with better rates of accuracy, support and compact. This study uses three practical datasets (Iris flower, HSV patients, and breast cancer patients) to illustrate the advantages of DIAMOND over some current methods. (C) 2011 Published by Elsevier Ltd.en_US
dc.language.isoen_USen_US
dc.subjectDIAMONDen_US
dc.subjectCubesen_US
dc.subjectClassification rulesen_US
dc.subjectInteger programen_US
dc.titleA DIAMOND method of inducing classification rules for biological dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.compbiomed.2011.05.002en_US
dc.identifier.journalCOMPUTERS IN BIOLOGY AND MEDICINEen_US
dc.citation.volume41en_US
dc.citation.issue8en_US
dc.citation.spage587en_US
dc.citation.epage599en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000294098800002-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000294098800002.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。