Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Kuo-Ju | en_US |
dc.contributor.author | Chen, Hsin-Chu | en_US |
dc.contributor.author | Tsai, Kai-An | en_US |
dc.contributor.author | Lin, Chien-Chung | en_US |
dc.contributor.author | Tsai, Hsin-Han | en_US |
dc.contributor.author | Chien, Shih-Hsuan | en_US |
dc.contributor.author | Cheng, Bo-Siao | en_US |
dc.contributor.author | Hsu, Yung-Jung | en_US |
dc.contributor.author | Shih, Min-Hsiung | en_US |
dc.contributor.author | Tsai, Chih-Hao | en_US |
dc.contributor.author | Shih, His-Hsin | en_US |
dc.contributor.author | Kuo, Hao-Chung | en_US |
dc.date.accessioned | 2014-12-08T15:28:47Z | - |
dc.date.available | 2014-12-08T15:28:47Z | - |
dc.date.issued | 2012-12-19 | en_US |
dc.identifier.issn | 1616-301X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1002/adfm.201200765 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/20821 | - |
dc.description.abstract | Colloidal quantum-dot light-emitting diodes (QDLEDs) with the HfO2/SiO2-distributed Bragg reflector (DBR) structure are fabricated using a pulsed spray coating method. Pixelated RGB arrays, 2-in. wafer-scale white light emission, and an integrated small footprint white light device are demonstrated. The experimental results show that the intensity of red, green, and blue (RGB) emission exhibited considerable enhancement because of the high reflectivity in the UV region by the DBR structure, which subsequently increases the use in the UV optical pumping of RGB QDs. A pulsed spray coating method is crucial in providing uniform RGB layers, and the polydimethylsiloxane (PDMS) film is used as the interface layer between each RGB color to avoid cross-contamination and self-assembly of QDs. Furthermore, the chromaticity coordinates of QDLEDs with the DBR structure remain constant under various pumping powers in the large area sample, whereas a larger shift toward high color temperatures is observed in the integrated device. The resulting color gamut of the proposed QDLEDs covers an area 1.2 times larger than that of the NTSC standard, which is favorable for the next generation of high-quality display technology. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | light-emitting diodes | en_US |
dc.subject | quantum dots | en_US |
dc.subject | resonant cavity enhanced devices | en_US |
dc.title | Resonant-Enhanced Full-Color Emission of Quantum-Dot-Based Display Technology Using a Pulsed Spray Method | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/adfm.201200765 | en_US |
dc.identifier.journal | ADVANCED FUNCTIONAL MATERIALS | en_US |
dc.citation.volume | 22 | en_US |
dc.citation.issue | 24 | en_US |
dc.citation.spage | 5138 | en_US |
dc.citation.epage | 5143 | en_US |
dc.contributor.department | 材料科學與工程學系 | zh_TW |
dc.contributor.department | 光電系統研究所 | zh_TW |
dc.contributor.department | 光電工程學系 | zh_TW |
dc.contributor.department | Department of Materials Science and Engineering | en_US |
dc.contributor.department | Institute of Photonic System | en_US |
dc.contributor.department | Department of Photonics | en_US |
dc.identifier.wosnumber | WOS:000312301800008 | - |
dc.citation.woscount | 17 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.