Full metadata record
DC FieldValueLanguage
dc.contributor.authorSu, Yu-Weien_US
dc.contributor.authorLan, Shang-Cheen_US
dc.contributor.authorWei, Kung-Hwaen_US
dc.date.accessioned2014-12-08T15:29:01Z-
dc.date.available2014-12-08T15:29:01Z-
dc.date.issued2012-12-01en_US
dc.identifier.issn1369-7021en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S1369-7021(13)70013-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/20920-
dc.description.abstractIn the last ten years, the highest efficiency obtained from organic photovoltaics (OPVs), such as bulk heterojunction polymer: fullerene solar cells, has risen from 2.5 to 11 %. This rapid progress suggests that the commercialization of OPVs should be realized soon if we can solve some technical issues. The advances in the development of OPVs can be attributed to four fronts: (i) a better understanding of the mechanism of photon-to-electron conversion; (ii) new materials with tailored energy levels and solubility; (iii) new processing approaches to induce optimal microstructures in the active layer; and (iv) new device architectures with novel interfacial layers. Herein, we review the materials, the microstructures of the active layers, the device structures, the interfacial layers that have been developed recently for OPVs, and provide future perspectives for this promising technology.en_US
dc.language.isoen_USen_US
dc.titleOrganic photovoltaicsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S1369-7021(13)70013-0en_US
dc.identifier.journalMATERIALS TODAYen_US
dc.citation.volume15en_US
dc.citation.issue12en_US
dc.citation.spage554en_US
dc.citation.epage562en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000314066400013-
dc.citation.woscount68-
Appears in Collections:Articles


Files in This Item:

  1. 000314066400013.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.