完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Tung-Yuen_US
dc.contributor.authorJuan, Hung-Huien_US
dc.contributor.authorLu, Henry Horng-Shingen_US
dc.date.accessioned2014-12-08T15:29:04Z-
dc.date.available2014-12-08T15:29:04Z-
dc.date.issued2012en_US
dc.identifier.isbn978-1-4673-0046-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/20980-
dc.description.abstractSpectral matting is a useful technique for image matting problem. A crucial issue of spectral matting is to determine the number of matting components which has large impacts on the matting performance. In this paper, we propose an improved framework based on spectral matting in order to solve this limitation. Iterative K-means clustering with the assistance of the modularity measure is adopted to obtain the hard segmentation that can be used as the initial guess of soft matting components. The number of matting components can be determined automatically because the improved framework will search possible image components by iteratively dividing image subgraphs.en_US
dc.language.isoen_USen_US
dc.subjectImage mattingen_US
dc.subjectSpectral mattingen_US
dc.subjectModularityen_US
dc.titleIMPROVED SPECTRAL MATTING BY ITERATIVE K-MEANS CLUSTERING AND THE MODULARITY MEASUREen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)en_US
dc.citation.spage1165en_US
dc.citation.epage1168en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000312381401069-
顯示於類別:會議論文