完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Tsung-Mingen_US
dc.contributor.authorLi, Tiexiangen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorWu, Chin-Tienen_US
dc.date.accessioned2014-12-08T15:29:22Z-
dc.date.available2014-12-08T15:29:22Z-
dc.date.issued2013-05-15en_US
dc.identifier.issn0377-0427en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.cam.2012.11.020en_US
dc.identifier.urihttp://hdl.handle.net/11536/21151-
dc.description.abstractWe study the generalized eigenvalue problems (GEPs) derived from modeling the surface acoustic wave in piezoelectric materials with periodic inhomogeneity. The eigenvalues appear in the reciprocal pairs due to periodic boundary conditions in the modeling. By transforming the GEP into a T-palindromic quadratic eigenvalue problem (TPQEP), the reciprocal relationship of the eigenvalues can be maintained. In this paper, we outline four recently developed structure-preserving algorithms, SA, SDA, TSHIRA and GTSHIRA, for solving the TPQEP. Numerical comparisons on the accuracy and the computational costs of these algorithm are presented. The eigenvalues close to unit circle on the complex plane are of interest in the area of filter and sensor designs. Our numerical results show that the Arnoldi-type structure-preserving algorithms TSHIRA and GTSHIRA with "re-symplectic" and "re-bi-isotropic" processes, respectively, are as accurate as the SA and SDA algorithms, and more efficient in finding these eigenvalues. (c) 2012 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectSurface acoustic waveen_US
dc.subjectPalindromic quadratic eigenvalue problemen_US
dc.subjectStructure-preservingen_US
dc.titleNumerical studies on structure-preserving algorithms for surface acoustic wave simulationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cam.2012.11.020en_US
dc.identifier.journalJOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICSen_US
dc.citation.volume244en_US
dc.citation.issueen_US
dc.citation.spage140en_US
dc.citation.epage154en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000315066000012-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000315066000012.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。