Full metadata record
DC FieldValueLanguage
dc.contributor.authorSankaran, Kamatchi Jothiramalingamen_US
dc.contributor.authorLin, Yen-Fuen_US
dc.contributor.authorJian, Wen-Binen_US
dc.contributor.authorChen, Huang-Chinen_US
dc.contributor.authorPanda, Kalpataruen_US
dc.contributor.authorSundaravel, Balakrishnanen_US
dc.contributor.authorDong, Chung-Lien_US
dc.contributor.authorTai, Nyan-Hwaen_US
dc.contributor.authorLin, I-Nanen_US
dc.date.accessioned2014-12-08T15:29:27Z-
dc.date.available2014-12-08T15:29:27Z-
dc.date.issued2013-02-27en_US
dc.identifier.issn1944-8244en_US
dc.identifier.urihttp://dx.doi.org/10.1021/am302430pen_US
dc.identifier.urihttp://hdl.handle.net/11536/21201-
dc.description.abstractConducting diamond nanowires (DNWs) films have been synthesized by N-2-based microwave plasma enhanced chemical vapor deposition. The incorporation of nitrogen into DNWs films is examined by C Is X-ray photoemission spectroscopy and morphology of DNWs is discerned using field-emission scanning electron microscopy and transmission electron microscopy (TEM). The electron diffraction pattern, the visible-Raman spectroscopy, and the near-edge X-ray absorption fine structure spectroscopy display the coexistence of sp(3) diamond and sp(2) graphitic phases in DNWs films. In addition, the microstructure investigation, carried out by high-resolution TEM with Fourier transformed pattern, indicates diamond grains and graphitic grain boundaries on surface of DNWs. The same result is confirmed by scanning tunneling microscopy and scanning tunneling spectroscopy (STS). Furthermore, the STS spectra of current-voltage curves discover a high tunneling current at the position near the graphitic grain boundaries. These highly conducting regimes of grain boundaries form effective electron paths and its transport mechanism is explained by the three-dimensional (3D) Mott's variable range hopping in a wide temperature from 300 to 20 K. Interestingly, this specific feature of high conducting grain boundaries of DNWs demonstrates a high efficiency in field emission and pave a way to the next generation of high-definition flat panel displays or plasma devices.en_US
dc.language.isoen_USen_US
dc.subjectdiamond nanowire filmsen_US
dc.subjectgraphitic grain boundaryen_US
dc.subjecthigh resolution transmission electron microscopyen_US
dc.subjectscanning tunneling spectroscopyen_US
dc.subjecthopping transporten_US
dc.subjectelectron field emissionen_US
dc.titleStructural and Electrical Properties of Conducting Diamond Nanowiresen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/am302430pen_US
dc.identifier.journalACS APPLIED MATERIALS & INTERFACESen_US
dc.citation.volume5en_US
dc.citation.issue4en_US
dc.citation.spage1294en_US
dc.citation.epage1301en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000315619100017-
dc.citation.woscount10-
Appears in Collections:Articles


Files in This Item:

  1. 000315619100017.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.