完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chan, Chi Hin | en_US |
dc.contributor.author | Czubak, Magdalena | en_US |
dc.date.accessioned | 2014-12-08T15:29:51Z | - |
dc.date.available | 2014-12-08T15:29:51Z | - |
dc.date.issued | 2013-03-01 | en_US |
dc.identifier.issn | 1548-159X | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/21403 | - |
dc.description.abstract | The Leray-Hopf solutions to the Navier-Stokes equation are known to be unique on R-2. We show the uniqueness of the Leray-Hopf solutions breaks down on H-2(-a(2)), the two dimensional hyperbolic space with constant sectional curvature -a(2). We also obtain a corresponding result on a more general negatively curved manifold for a modified geometric version of the Navier-Stokes equation. Finally, as a corollary we also show a lack of the Liouville theorem in the hyperbolic setting both in two and three dimensions. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Navier-Stokes | en_US |
dc.subject | Leray-Hopf | en_US |
dc.subject | non-uniqueness | en_US |
dc.subject | hyperbolic space | en_US |
dc.subject | Liouville theorem | en_US |
dc.title | Non-uniqueness of the Leray-Hopf solutions in the hyperbolic setting | en_US |
dc.type | Article | en_US |
dc.identifier.journal | DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS | en_US |
dc.citation.volume | 10 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 43 | en_US |
dc.citation.epage | 77 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000316446100003 | - |
dc.citation.woscount | 1 | - |
顯示於類別: | 期刊論文 |