完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsu, Yung-Chien_US
dc.contributor.authorLin, Sheng-Fuuen_US
dc.date.accessioned2014-12-08T15:29:57Z-
dc.date.available2014-12-08T15:29:57Z-
dc.date.issued2013en_US
dc.identifier.issn1064-1246en_US
dc.identifier.urihttp://hdl.handle.net/11536/21473-
dc.identifier.urihttp://dx.doi.org/10.3233/IFS-2012-0540en_US
dc.description.abstractIn this paper, a recurrent wavelet-based neuro-fuzzy identifier (RWNFI) with a self-organization hybrid evolution learning algorithm (SOHELA) is proposed for solving various identification problems. In the proposed SOHELA, the group-based symbiotic evolution (GSE) is adopted such that each group in the GSE represents a collection of only one fuzzy rule. The proposed SOHELA consists of structure learning and parameter learning. In structure learning, the proposed SOHELA uses the self-organization algorithm (SOA) to determine a suitable rule number in the RWNFI. In parameter learning, the proposed SOHELA uses the data mining-based selection method (DMSM) and the data mining-based crossover method (DMCM) to determine groups and parent groups using the data mining method called the frequent pattern growth (FP-Growth) method. Based on identification simulations, the excellent performance of the proposed SOHELA compares with other various existing models.en_US
dc.language.isoen_USen_US
dc.subjectFuzzy modelen_US
dc.subjectcontrolen_US
dc.subjectgroup-based symbiotic evolutionen_US
dc.subjectFP-Growthen_US
dc.subjectidentificationen_US
dc.titleSelf-organization hybrid evolution learning algorithm for recurrent wavelet-based neuro-fuzzy identifier designen_US
dc.typeArticleen_US
dc.identifier.doi10.3233/IFS-2012-0540en_US
dc.identifier.journalJOURNAL OF INTELLIGENT & FUZZY SYSTEMSen_US
dc.citation.volume24en_US
dc.citation.issue3en_US
dc.citation.spage521en_US
dc.citation.epage533en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000316113700010-
dc.citation.woscount0-
顯示於類別:期刊論文