Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiang, Chen-Yuen_US
dc.contributor.authorSiniscalchi, Sabato Marcoen_US
dc.contributor.authorWang, Yih-Ruen_US
dc.contributor.authorChen, Sin-Horngen_US
dc.contributor.authorLee, Chin-Huien_US
dc.date.accessioned2014-12-08T15:30:03Z-
dc.date.available2014-12-08T15:30:03Z-
dc.date.issued2012en_US
dc.identifier.isbn978-1-4673-2507-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/21522-
dc.description.abstractWe present a cross-language knowledge integration framework to improve the performance in large vocabulary continuous speech recognition. Two types of knowledge sources, manner attribute and prosodic structure, are incorporated. For manner of articulation, cross-lingual attribute detectors trained with an American English corpus (WSJ0) are utilized to verify and rescore hypothesized Mandarin syllables in word lattices obtained with state-of-the-art systems. For the prosodic structure, models trained with an unsupervised joint prosody labeling and modeling technique using a Mandarin corpus (TCC300) are used in lattice rescoring. Experimental results on Mandarin syllable, character and word recognition with the TCC300 corpus show that the proposed approach significantly outperforms the baseline system that does not use articulatory and prosodic information. It also demonstrates a potential of utilizing results from cross-lingual attribute detectors as a language-universal frontend for automatic speech recognition.en_US
dc.language.isoen_USen_US
dc.subjectLVCSRen_US
dc.subjectprosody modelingen_US
dc.subjectattribute detectoren_US
dc.subjectknowledge integrationen_US
dc.titleA STUDY ON CROSS-LANGUAGE KNOWLEDGE INTEGRATION IN MANDARIN LVCSRen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2012 8TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSINGen_US
dc.citation.spage315en_US
dc.citation.epage319en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000316984700073-
Appears in Collections:Conferences Paper