Full metadata record
DC FieldValueLanguage
dc.contributor.authorYang, Shiau-Ruen_US
dc.contributor.authorHsu, Sheng-Chihen_US
dc.contributor.authorLu, Shao-Weien_US
dc.contributor.authorKo, Li-Weien_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:30:06Z-
dc.date.available2014-12-08T15:30:06Z-
dc.date.issued2012en_US
dc.identifier.isbn978-1-4673-0219-7en_US
dc.identifier.issn0271-4302en_US
dc.identifier.urihttp://hdl.handle.net/11536/21576-
dc.description.abstractInterpretation of cardiac rhythms is highly dependent on accurate detection of atrial activity. The robustness is an important requirement for clinical usage. This study presents an adaptive QRS detection method for real-time clinical ECG signals. In this method, center differentiation is applied as a whitening filer, and a composite function enhances the high frequency QRS energy. To robustly detect clinical data, a novel threshold selection method based on statistics is proposed. Moreover, this study provides a benchmarking clinical dataset acquired from cardiac patients. Our extensive experimental results using the MIT-BIH arrhythmia database show that our technique can detect beats with 99.67% accuracy, and the sensitivity is 99.83%. With the exceptional QRS detection result, further testing of the proposed method with clinical data shows the accuracy for atrial and ventricular arrhythmias is 82.9% and 90.2%, respectively.en_US
dc.language.isoen_USen_US
dc.subjectAdaptive thresholden_US
dc.subjectatrial fibrillationen_US
dc.subjectelectrocardiogramen_US
dc.subjectexpert systemen_US
dc.subjectreal time monitoringen_US
dc.subjecttelecardiologyen_US
dc.titleDevelopment of Adaptive QRS Detection Rules Based on Center Differentiation Method for Clinical Applicationen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012)en_US
dc.citation.spage2071en_US
dc.citation.epage2074en_US
dc.contributor.department腦科學研究中心zh_TW
dc.contributor.departmentBrain Research Centeren_US
dc.identifier.wosnumberWOS:000316903702071-
Appears in Collections:Conferences Paper