Title: Simple pyridyl-salicylimine-based fluorescence "turn-on" sensors for distinct detections of Zn2+, Al3+ and OH- ions in mixed aqueous media
Authors: Shellaiah, Muthaiah
Wu, Yen-Hsing
Lin, Hong-Cheu
材料科學與工程學系
Department of Materials Science and Engineering
Issue Date: 2013
Abstract: Simple pyridyl-salicylimine derivatives (F1, F2 and F3) are reported for the first time as fluorescence "turn-on" sensors for distinct detections of Zn2+, Al3+ and OH- ions in mixed-aqueous media CH3CN/H2O with volume ratios of 6/4 and 3/7 (at pH = 7 and 25 degrees C) via internal charge transfer (ICT), chelation enhanced fluorescence (CHEF), and deprotonation mechanisms. F1 and F2 show diverse turn-on sensing applications to Zn2+, Al3+ and OH- ions, but F3 exhibited the fluorescence turn-on sensing to Al3+ and OH- ions in CH3CN/H2O (6/4; vol/vol). F1+Zn2+ and F2+Zn2+ complexes revealed the reversibilities and ratiometric displacements of Zn2+ with ethylene diamine tetra acetic acid (EDTA) and Al3+ ions, respectively, in CH3CN/H2O (6/4; vol/vol). On the other hand, F1, F2 and F3 in CH3CN/H2O (3/7; vol/vol) showed sensitivities only to Al3+ ions but negligible selectivities to OH- ions. Stoichiometry of all sensor complexes were calculated as 1 : 1 by job's plots based on UV/Vis and PL titrations. The complex formation and binding sites of all sensor materials were well characterized by H-1, C-13 NMR, and mass (FAB) spectral analysis. Detection limits were calculated from standard deviations and linear fitting calculations. The association constant (log K-a) values of sensor complexes were evaluated from the fluorescence binding isotherms. The fluorescence decay constant (tau) values were estimated from time resolved fluorescence studies. Time, temperature, pH and solvent concentration effects towards sensor responses were fully investigated in this report.
URI: http://hdl.handle.net/11536/21772
http://dx.doi.org/10.1039/c3an36840h
ISSN: 0003-2654
DOI: 10.1039/c3an36840h
Journal: ANALYST
Volume: 138
Issue: 10
Begin Page: 2931
End Page: 2942
Appears in Collections:Articles


Files in This Item:

  1. 000317867400022.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.