Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Chien-Liangen_US
dc.contributor.authorChang, Tao-Hsingen_US
dc.contributor.authorLi, Hsuan-Hsunen_US
dc.date.accessioned2014-12-08T15:30:34Z-
dc.date.available2014-12-08T15:30:34Z-
dc.date.issued2013-06-16en_US
dc.identifier.issn0165-0114en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.fss.2013.01.004en_US
dc.identifier.urihttp://hdl.handle.net/11536/21844-
dc.description.abstractWhile focusing on document clustering, this work presents a fuzzy semi-supervised clustering algorithm called fuzzy semi-Kmeans. The fuzzy semi-Kmeans is an extension of K-means clustering model, and it is inspired by an EM algorithm and a Gaussian mixture model. Additionally, the fuzzy semi-Kmeans provides the flexibility to employ different fuzzy membership functions to measure the distance between data. This work employs Gaussian weighting function to conduct experiments, but cosine similarity function can be used as well. This work conducts experiments on three data sets and compares fuzzy semi-Kmeans with several methods. The experimental results indicate that fuzzy semi-Kmeans can generally outperform the other methods. (C) 2013 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectFuzzy clusteringen_US
dc.subjectSemi-supervised learningen_US
dc.subjectText miningen_US
dc.subjectFuzzy semi-Kmeansen_US
dc.titleClustering documents with labeled and unlabeled documents using fuzzy semi-Kmeansen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.fss.2013.01.004en_US
dc.identifier.journalFUZZY SETS AND SYSTEMSen_US
dc.citation.volume221en_US
dc.citation.issueen_US
dc.citation.spage48en_US
dc.citation.epage64en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000318328200003-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000318328200003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.