完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, Chien-Liangen_US
dc.contributor.authorChang, Tao-Hsingen_US
dc.contributor.authorLi, Hsuan-Hsunen_US
dc.date.accessioned2014-12-08T15:30:34Z-
dc.date.available2014-12-08T15:30:34Z-
dc.date.issued2013-06-16en_US
dc.identifier.issn0165-0114en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.fss.2013.01.004en_US
dc.identifier.urihttp://hdl.handle.net/11536/21844-
dc.description.abstractWhile focusing on document clustering, this work presents a fuzzy semi-supervised clustering algorithm called fuzzy semi-Kmeans. The fuzzy semi-Kmeans is an extension of K-means clustering model, and it is inspired by an EM algorithm and a Gaussian mixture model. Additionally, the fuzzy semi-Kmeans provides the flexibility to employ different fuzzy membership functions to measure the distance between data. This work employs Gaussian weighting function to conduct experiments, but cosine similarity function can be used as well. This work conducts experiments on three data sets and compares fuzzy semi-Kmeans with several methods. The experimental results indicate that fuzzy semi-Kmeans can generally outperform the other methods. (C) 2013 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectFuzzy clusteringen_US
dc.subjectSemi-supervised learningen_US
dc.subjectText miningen_US
dc.subjectFuzzy semi-Kmeansen_US
dc.titleClustering documents with labeled and unlabeled documents using fuzzy semi-Kmeansen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.fss.2013.01.004en_US
dc.identifier.journalFUZZY SETS AND SYSTEMSen_US
dc.citation.volume221en_US
dc.citation.issueen_US
dc.citation.spage48en_US
dc.citation.epage64en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000318328200003-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000318328200003.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。