標題: | Computational Investigation of the Adsorption and Reactions of SiHx (x=0-4) on TiO2 Anatase (101) and Rutile (110) Surfaces |
作者: | Huang, Wen-Fei Chen, Hsin-Tsung Lin, M. C. 應用化學系 應用化學系分子科學碩博班 Department of Applied Chemistry Institute of Molecular science |
關鍵字: | titanium dioxide;gas-surface reactions;SiHx decomposition;density functional theory |
公開日期: | 15-六月-2013 |
摘要: | The adsorption and reactions of the SiHx (x = 0-4) on Titanium dioxide (TiO2) anatase (101) and rutile (110) surfaces have been studied by using periodic density functional theory in conjunction with the projected augmented wave approach. It is found that SiHx (x = 0-4) can form the monodentate, bidentate, or tridentate adsorbates, depending on the value of x. H coadsorption is found to reduce the stability of SiHx adsorption. Hydrogen migration on the TiO2 surfaces is also discussed for elucidation of the SiHx decomposition mechanism. Comparing adsorption energies, energy barriers, and potential energy profiles on the two TiO2 surfaces, the SiHx decomposition can occur more readily on the rutile (110) surface than on the anatase (101) surface. The results may be used for kinetic simulation of Si thin-film deposition and quantum dot preparation on titania by chemical vapor deposition (CVD), plasma enhanced CVD, or catalytically enhanced CVD. (C) 2013 Wiley Periodicals, Inc. |
URI: | http://dx.doi.org/10.1002/qua.24388 http://hdl.handle.net/11536/21849 |
ISSN: | 0020-7608 |
DOI: | 10.1002/qua.24388 |
期刊: | INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY |
Volume: | 113 |
Issue: | 12 |
起始頁: | 1696 |
結束頁: | 1708 |
顯示於類別: | 期刊論文 |