Full metadata record
DC FieldValueLanguage
dc.contributor.authorOmar, Hani A.en_US
dc.contributor.authorLiu, Duen-Renen_US
dc.date.accessioned2014-12-08T15:30:50Z-
dc.date.available2014-12-08T15:30:50Z-
dc.date.issued2012en_US
dc.identifier.isbn978-0-7695-4763-3en_US
dc.identifier.issn1949-4653en_US
dc.identifier.urihttp://hdl.handle.net/11536/22021-
dc.identifier.urihttp://dx.doi.org/10.1109/ICGEC.2012.87en_US
dc.description.abstractIn this paper, we examine how the popularity information of magazines can be useful for sales forecasting. We propose a sales forecasting model based on Back Propagation Neural Network (BPNN) where the inputs are historical sales and the popularity indexes of magazine article titles. Our proposed model using the popularity of magazine article titles in the forecasting process can improve the accuracy of sales forecasting.en_US
dc.language.isoen_USen_US
dc.subjectForecastingen_US
dc.subjectNeural-Networken_US
dc.subjectPupularityen_US
dc.subjectGoogle Search engineen_US
dc.titleEnhancing Sales Forecasting by using Neuro Networks and the Popularity of Magazine Article Titlesen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/ICGEC.2012.87en_US
dc.identifier.journal2012 SIXTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING (ICGEC)en_US
dc.citation.spage577en_US
dc.citation.epage580en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000319285800141-
Appears in Collections:Conferences Paper


Files in This Item:

  1. 000319285800141.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.