Full metadata record
DC FieldValueLanguage
dc.contributor.authorHwang, Hsin-Teen_US
dc.contributor.authorTsao, Yuen_US
dc.contributor.authorWang, Hsin-Minen_US
dc.contributor.authorWang, Yih-Ruen_US
dc.contributor.authorChen, Sin-Horngen_US
dc.date.accessioned2014-12-08T15:30:53Z-
dc.date.available2014-12-08T15:30:53Z-
dc.date.issued2012en_US
dc.identifier.isbn978-1-62276-759-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/22051-
dc.description.abstractThe Gaussian mixture model (GMM)-based method has dominated the field of voice conversion (VC) for last decade. However, the converted spectra are excessively smoothed and thus produce muffled converted sound. In this study, we improve the speech quality by enhancing the dependency between the source (natural sound) and converted feature vectors (converted sound). It is believed that enhancing this dependency can make the converted sound closer to the natural sound. To this end, we propose an integrated maximum a posteriori and mutual information (MAPMI) criterion for parameter generation on spectral conversion. Experimental results demonstrate that the quality of converted speech by the proposed MAPMI method outperforms that by the conventional method in terms of formal listening test.en_US
dc.language.isoen_USen_US
dc.subjectVoice conversionen_US
dc.subjectmutual informationen_US
dc.subjectGMMen_US
dc.titleA Study of Mutual Information for GMM-Based Spectral Conversionen_US
dc.typeProceedings Paperen_US
dc.identifier.journal13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3en_US
dc.citation.spage78en_US
dc.citation.epage81en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000320827200020-
Appears in Collections:Conferences Paper