Full metadata record
DC FieldValueLanguage
dc.contributor.authorChien, Jen-Tzungen_US
dc.contributor.authorHsieh, Hsin-Lungen_US
dc.date.accessioned2014-12-08T15:30:53Z-
dc.date.available2014-12-08T15:30:53Z-
dc.date.issued2012en_US
dc.identifier.isbn978-1-62276-759-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/22055-
dc.description.abstractNonnegative matrix factorization (NMF) is developed for parts-based representation of nonnegative data with the sparseness constraint. The degree of sparseness plays an important role for model regularization. This paper presents Bayesian group sparse learning for NMF and applies it for single-channel source separation. This method establishes the common bases and individual bases to characterize the shared information and residual noise in observed signals, respectively. Laplacian scale mixture distribution is introduced for sparse coding given a sparseness control parameter. A Markov chain Monte Carlo procedure is presented to infer two groups of parameters and their hyperparameters through a sampling procedure based on the conditional posterior distributions. Experiments on separating the single-channel audio signals into rhythmic and harmonic source signals show that the proposed method outperforms baseline NMF, Bayesian NMF and other group-based NMF in terms of signal-to-interference ratio.en_US
dc.language.isoen_USen_US
dc.subjectBayesian sparse learningen_US
dc.subjectgroup sparsityen_US
dc.subjectnonnegative matrix factorizationen_US
dc.subjectsource separationen_US
dc.titleBayesian Group Sparse Learning for Nonnegative Matrix Factorizationen_US
dc.typeProceedings Paperen_US
dc.identifier.journal13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3en_US
dc.citation.spage1550en_US
dc.citation.epage1553en_US
dc.contributor.department電機資訊學士班zh_TW
dc.contributor.departmentUndergraduate Honors Program of Electrical Engineering and Computer Scienceen_US
dc.identifier.wosnumberWOS:000320827200388-
Appears in Collections:Conferences Paper