Full metadata record
DC FieldValueLanguage
dc.contributor.authorTseng, Chen-yuen_US
dc.contributor.authorWang, Sheng-Jyhen_US
dc.date.accessioned2014-12-08T15:30:53Z-
dc.date.available2014-12-08T15:30:53Z-
dc.date.issued2012en_US
dc.identifier.isbn978-1-4673-2533-2en_US
dc.identifier.issn1522-4880en_US
dc.identifier.urihttp://hdl.handle.net/11536/22057-
dc.description.abstractGlobal spatial coherence is an important criterion in the performance evaluation of many image applications, such as image segmentation, image enhancement, depth estimation, motion estimation, and many others. In this paper, we treat the recovery of spatial coherence as a Maximum-A-Posteriori (MAP) estimation problem, with a generalized spatial-coherence prior model based on Matting Laplacian (ML) matrix. Besides, to enhance computational efficiency, a cell-based Matting-Laplacian (CML) framework is further proposed. In our experiments, we demonstrate that the proposed approach can greatly improve the spatial coherence of the output results in variant applications, like the shape-from-focus process and the SIFT-flow refinement process.en_US
dc.language.isoen_USen_US
dc.subjectmatting Laplacianen_US
dc.subjectimage filteringen_US
dc.subjectdepth estimationen_US
dc.subjectspatial coherenceen_US
dc.subjectspectral graphen_US
dc.titleMAXIMUM-A-POSTERIORI ESTIMATION FOR GLOBAL SPATIAL COHERENCE RECOVERY BASED ON MATTING LAPLACIANen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012)en_US
dc.citation.spage293en_US
dc.citation.epage296en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000319334900069-
Appears in Collections:Conferences Paper