Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Lo-Binen_US
dc.contributor.authorBai, Zhidongen_US
dc.contributor.authorHuang, Su-Yunen_US
dc.contributor.authorHwang, Chii-Rueyen_US
dc.date.accessioned2014-12-08T15:30:58Z-
dc.date.available2014-12-08T15:30:58Z-
dc.date.issued2013-09-01en_US
dc.identifier.issn0047-259Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jmva.2013.05.006en_US
dc.identifier.urihttp://hdl.handle.net/11536/22103-
dc.description.abstractMany kernel-based learning algorithms have the computational load scaled with the sample size n due to the column size of a full kernel Gram matrix K. This article considers the Nystrom low-rank approximation. It uses a reduced kernel (K) over cap, which is n x m, consisting of m columns (say columns i(1), i(2),..., i(m)) randomly drawn from K. This approximation takes the form K approximate to (K) over capU(-1)(K) over cap (T), where U is the reduced m x m matrix formed by rows, i(1),i(2),..., i(m) of (K) over cap. Often m is much smaller than the sample size n resulting in a thin rectangular reduced kernel, and it leads to learning algorithms scaled with the column size m. The quality of matrix approximations can be assessed by the closeness of their eigenvalues and eigenvectors. In this article, asymptotic error bounds on eigenvalues and eigenvectors are derived for the Nystrom low-rank approximation matrix. (C) 2013 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNystrom approximationen_US
dc.subjectKernel Gram matrixen_US
dc.subjectSpectrum decompositionen_US
dc.subjectAsymptotic error bounden_US
dc.subjectWishart random matrixen_US
dc.titleAsymptotic error bounds for kernel-based Nystrom low-rank approximation matricesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jmva.2013.05.006en_US
dc.identifier.journalJOURNAL OF MULTIVARIATE ANALYSISen_US
dc.citation.volume120en_US
dc.citation.issueen_US
dc.citation.spage102en_US
dc.citation.epage119en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000322290500007-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000322290500007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.