完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChung, Chung-Houen_US
dc.contributor.authorLe Hur, Karynen_US
dc.contributor.authorFinkelstein, Gleben_US
dc.contributor.authorVojta, Matthiasen_US
dc.contributor.authorWoelfle, Peteren_US
dc.date.accessioned2019-04-03T06:42:55Z-
dc.date.available2019-04-03T06:42:55Z-
dc.date.issued2013-06-21en_US
dc.identifier.issn1098-0121en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevB.87.245310en_US
dc.identifier.urihttp://hdl.handle.net/11536/22284-
dc.description.abstractThe resonant-level model represents a paradigmatic quantum system which serves as a basis for many other quantum impurity models. We provide a comprehensive analysis of the nonequilibrium transport near a quantum phase transition in a spinless dissipative resonant-level model, extending earlier work [Phys. Rev. Lett 102, 216803 (2009)]. A detailed derivation of a rigorous mapping of our system onto an effective Kondo model is presented. A controlled energy-dependent renormalization-group approach is applied to compute the nonequilibrium current in the presence of a finite bias voltage V. In the linear-response regime V -> 0, the system exhibits as a function of the dissipative strength a localized-delocalized quantum transition of the Kosterlitz-Thouless (KT) type. We address fundamental issues of the nonequilibrium transport near the quantum phase transition: Does the bias voltage play the same role as temperature to smear out the transition? What is the scaling of the nonequilibrium conductance near the transition? At finite temperatures, we show that the conductance follows the equilibrium scaling for V < T, while it obeys a distinct nonequilibrium profile for V > T. We furthermore provide different signatures of the transition in the finite-frequency current noise and ac conductance via a recently developed functional renormalization group (FRG) approach. The generalization of our analysis to nonequilibrium transport through a resonant level coupled to two chiral Luttinger liquid leads, generated by fractional quantum Hall edge states, is discussed. Our work on the dissipative resonant level has direct relevance to experiments on a quantum dot coupled to a resistive environment, such as H. Mebrahtu et al., [Nature (London) 488, 61 (2012)].en_US
dc.language.isoen_USen_US
dc.titleNonequilibrium quantum transport through a dissipative resonant levelen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevB.87.245310en_US
dc.identifier.journalPHYSICAL REVIEW Ben_US
dc.citation.volume87en_US
dc.citation.issue24en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000320767700003en_US
dc.citation.woscount8en_US
顯示於類別:期刊論文


文件中的檔案:

  1. ea4a9f39ff697acbd3c9e572cdd40f0f.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。