Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Pi-Juen_US
dc.contributor.authorWeng, Chen-Yaen_US
dc.contributor.authorChang, Shu-Weien_US
dc.contributor.authorLin, Tzy-Rongen_US
dc.contributor.authorTien, Chung-Haoen_US
dc.date.accessioned2014-12-08T15:31:23Z-
dc.date.available2014-12-08T15:31:23Z-
dc.date.issued2013-06-03en_US
dc.identifier.issn1094-4087en_US
dc.identifier.urihttp://dx.doi.org/10.1364/OE.21.013479en_US
dc.identifier.urihttp://hdl.handle.net/11536/22302-
dc.description.abstractWe theoretically analyze plasmonic gap-mode nanocavities covered by a thick cladding layer at telecommunication wavelengths. In the presence of high-index cladding materials such as semiconductors, the first-order hybrid gap mode becomes more promising for lasing than the fundamental one. Still, the significant mirror loss remains the main challenge to lasing. Using silver coatings within a decent thickness range at two end facets, we show that the reflectivity is substantially enhanced above 95 %. At a coating thickness of 50 nm and cavity length of 1.51 mu m, the quality factor is about 150, and the threshold gain is lower than 1500 cm(-1). (C) 2013 Optical Society of Americaen_US
dc.language.isoen_USen_US
dc.titlePlasmonic gap-mode nanocavities with metallic mirrors in high-index claddingen_US
dc.typeArticleen_US
dc.identifier.doi10.1364/OE.21.013479en_US
dc.identifier.journalOPTICS EXPRESSen_US
dc.citation.volume21en_US
dc.citation.issue11en_US
dc.citation.spage13479en_US
dc.citation.epage13491en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000319814900052-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000319814900052.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.