Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, B. F.en_US
dc.contributor.authorHuang, H. Y.en_US
dc.contributor.authorWang, J. H.en_US
dc.contributor.authorChen, C. J.en_US
dc.contributor.authorChen, Y. L.en_US
dc.date.accessioned2014-12-08T15:31:49Z-
dc.date.available2014-12-08T15:31:49Z-
dc.date.issued2013-08-01en_US
dc.identifier.issn1665-6423en_US
dc.identifier.urihttp://hdl.handle.net/11536/22481-
dc.description.abstractThis study proposes a block-edge-based perceptual zero-tree coding (PZTC) method, which is implemented with efficient optimization on the embedded platform. PZTC combines two novel compression concepts for coding efficiency and quality: block-edge detection (BED) and the low-complexity and low-memory entropy coder (LLEC). The proposed PZTC was implemented as a fixed-point version and optimized on the DSP-based platform based on both the presented platform-independent and platform-dependent optimization technologies. For platform-dependent optimization, this study examines the fixed-point PZTC and analyzes the complexity to optimize PZTC toward achieving an optimal coding efficiency. Furthermore, hardware-based platform-dependent optimizations are presented to reduce the memory size. The performance, such as compression quality and efficiency, is validated by experimental results.en_US
dc.language.isoen_USen_US
dc.subjectComputational complexityen_US
dc.subjectimage compressionen_US
dc.subjectembedded systemen_US
dc.subjectoptimizationen_US
dc.titlePerceptual Zero-Tree Coding with Efficient Optimization for Embedded Platformsen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.journalJOURNAL OF APPLIED RESEARCH AND TECHNOLOGYen_US
dc.citation.volume11en_US
dc.citation.issueen_US
dc.citation.spage487en_US
dc.citation.epage495en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000323803500002-
Appears in Collections:Conferences Paper