Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chang, ChiaMing | en_US |
dc.contributor.author | Kao, W. F. | en_US |
dc.date.accessioned | 2019-04-03T06:43:38Z | - |
dc.date.available | 2019-04-03T06:43:38Z | - |
dc.date.issued | 2013-09-03 | en_US |
dc.identifier.issn | 2470-0010 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1103/PhysRevD.88.063504 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/22517 | - |
dc.description.abstract | A simple method is shown to demonstrate that the teleparallel equivalent of general relativity can be generalized to the Weyl-invariant models. We will also show explicitly that Weyl symmetry is preserved step by step throughout the 5D Kaluza-Klein dimensional-reduction process. As a result, the dimensional reduced model will be shown to be a theory with two scalar fields. When a symmetry-breaking potential is introduced, a strong constraint will effectively turn off one of the scalar fields. For heuristic reasons, the stability properties of the power-law solution associated with the resulting one-scalar-field model will be presented explicitly. In particular, all stable modes can be solved explicitly as functions of the free parameter associated with the symmetry-breaking potential. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Weyl-invariant Kaluza-Klein theory and the teleparallel equivalent of Weyl-invariant general relativity | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1103/PhysRevD.88.063504 | en_US |
dc.identifier.journal | PHYSICAL REVIEW D | en_US |
dc.citation.volume | 88 | en_US |
dc.citation.issue | 6 | en_US |
dc.citation.spage | 0 | en_US |
dc.citation.epage | 0 | en_US |
dc.contributor.department | 物理研究所 | zh_TW |
dc.contributor.department | Institute of Physics | en_US |
dc.identifier.wosnumber | WOS:000323894000008 | en_US |
dc.citation.woscount | 2 | en_US |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.