Full metadata record
DC FieldValueLanguage
dc.contributor.authorNiu, Wei-Fangen_US
dc.date.accessioned2014-12-08T15:32:43Z-
dc.date.available2014-12-08T15:32:43Z-
dc.date.issued2013en_US
dc.identifier.issn1081-1826en_US
dc.identifier.urihttp://hdl.handle.net/11536/22845-
dc.identifier.urihttp://dx.doi.org/10.1515/snde-2012-0017en_US
dc.description.abstractThis paper proposes a method for the maximum likelihood estimation of continuous time stochastic volatility models. The key step is to introduce approximating GARCH processes that have higher frequencies of construction but are observed at lower frequencies. The latency of the volatility process is retained by augmenting data points between price observations. The convergence of the likelihood function can be obtained with mild regularity conditions. Such an approach reconciles discrete and continuous time models, and it can be implemented easily under the context of the simulated maximum likelihood. As an extension to the commonly used modified Brownian bridge sampler, we propose generating paths with skewed density to match the dynamics of the volatilities.en_US
dc.language.isoen_USen_US
dc.subjectimportance samplingen_US
dc.subjectlatent variableen_US
dc.subjectsimulated maximum likelihooden_US
dc.subjectskewed normal distributionen_US
dc.titleMaximum likelihood estimation of continuous time stochastic volatility models with partially observed GARCHen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/snde-2012-0017en_US
dc.identifier.journalSTUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICSen_US
dc.citation.volume17en_US
dc.citation.issue4en_US
dc.citation.spage421en_US
dc.citation.epage438en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000324170200004-
dc.citation.woscount0-
Appears in Collections:Articles