完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTseng, Chin-Yuanen_US
dc.contributor.authorChen, Jian-Anen_US
dc.contributor.authorHu, Jwu-Shengen_US
dc.date.accessioned2014-12-08T15:32:44Z-
dc.date.available2014-12-08T15:32:44Z-
dc.date.issued2012en_US
dc.identifier.isbn978-1-4673-2127-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/22878-
dc.description.abstractImage blur resulting from camera motion is an annoying factor for robotic vision, especially for high-speed applications. This work proposes a sensor fusion model for blind image de-blurring using inertial measurement unit. The model attempts to observe the camera motion, estimate the point spread function and de-convolute the image simultaneously. To solve the problem, an iterative estimation procedure using Maximum A-Posteriori Expectation-Maximization (MAP-EM) algorithms and Unscented Kalman Filter are proposed. Simulation results show the feasibility of the proposed formulation to blindly de-blurring the image under camera motion.en_US
dc.language.isoen_USen_US
dc.titleUnscented Blind Image De-blurring Using Camera with Inertial Measurement Uniten_US
dc.typeProceedings Paperen_US
dc.identifier.journal2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012)en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000321004000352-
顯示於類別:會議論文