完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Tseng, Chin-Yuan | en_US |
dc.contributor.author | Chen, Jian-An | en_US |
dc.contributor.author | Hu, Jwu-Sheng | en_US |
dc.date.accessioned | 2014-12-08T15:32:44Z | - |
dc.date.available | 2014-12-08T15:32:44Z | - |
dc.date.issued | 2012 | en_US |
dc.identifier.isbn | 978-1-4673-2127-3 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/22878 | - |
dc.description.abstract | Image blur resulting from camera motion is an annoying factor for robotic vision, especially for high-speed applications. This work proposes a sensor fusion model for blind image de-blurring using inertial measurement unit. The model attempts to observe the camera motion, estimate the point spread function and de-convolute the image simultaneously. To solve the problem, an iterative estimation procedure using Maximum A-Posteriori Expectation-Maximization (MAP-EM) algorithms and Unscented Kalman Filter are proposed. Simulation results show the feasibility of the proposed formulation to blindly de-blurring the image under camera motion. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Unscented Blind Image De-blurring Using Camera with Inertial Measurement Unit | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | 2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012) | en_US |
dc.contributor.department | 電控工程研究所 | zh_TW |
dc.contributor.department | Institute of Electrical and Control Engineering | en_US |
dc.identifier.wosnumber | WOS:000321004000352 | - |
顯示於類別: | 會議論文 |