完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiao, Shih-Huien_US
dc.contributor.authorHan, Ming-Fengen_US
dc.contributor.authorChang, Jyh-Yeongen_US
dc.contributor.authorLin, Chin-Tengen_US
dc.date.accessioned2014-12-08T15:33:05Z-
dc.date.available2014-12-08T15:33:05Z-
dc.date.issued2013-09-01en_US
dc.identifier.issn1562-2479en_US
dc.identifier.urihttp://hdl.handle.net/11536/23031-
dc.description.abstractIn the largest samplings of data, outliers are observations that are well separated from the major samples. To deal with outlier problems, a least trimmed squares (LTS) estimator is developed for robust linear regression problems. It is meaningful to generalize the LTS estimator to fuzzy neural network (FNN) for robust nonlinear regression problems. In addition, the determination of the trimming constant is important when using the LTS estimator. In this paper, we propose the use of an adaptive least trimmed squares fuzzy neural network (ALTS-FNN), which applies a scale estimate to a LTS-FNN. This paper particularly emphasizes the robustness of the proposed network against outliers and an automatic determination of the trimming percentage. Simulation problems are provided to compare the performance of the proposed ALTS-FNN, with an LTS-FNN and typical FNN. Simulation results show that the proposed ALTS-FNN is highly robust against outliers.en_US
dc.language.isoen_USen_US
dc.subjectleast trimmed squares (LTS) estimatoren_US
dc.subjectfuzzy neural network (FNN)en_US
dc.subjectleast trimmed squares fuzzy neural network (LTS-FNN)en_US
dc.subjectadaptive least trimmed squares fuzzy neural network (ALTS-FNN)en_US
dc.titleStudy on Adaptive Least Trimmed Squares Fuzzy Neural Networken_US
dc.typeArticleen_US
dc.identifier.journalINTERNATIONAL JOURNAL OF FUZZY SYSTEMSen_US
dc.citation.volume15en_US
dc.citation.issue3en_US
dc.citation.spage326en_US
dc.citation.epage334en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000326065100007-
dc.citation.woscount0-
顯示於類別:期刊論文