完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Shih-Kunen_US
dc.contributor.authorLu, Han-Linen_US
dc.contributor.authorLeong, Wai-Mengen_US
dc.contributor.authorLiu, Huanen_US
dc.date.accessioned2014-12-08T15:33:12Z-
dc.date.available2014-12-08T15:33:12Z-
dc.date.issued2013en_US
dc.identifier.isbn978-0-7695-5021-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/23083-
dc.identifier.urihttp://dx.doi.org/10.1109/SERE.2013.26en_US
dc.description.abstractThis paper proposes to test web applications and generate the feasible exploits automatically, including cross-site scripting and SQL injection attacks. We test the web applications with initial random inputs by detecting symbolic queries to SQL servers or symbolic responses to HTTP servers. After symbolic outputs detected, we are able to generate attack strings and reproduce the results, emulating the manual attack behavior. In contrast with other traditional detection and prevention methods, we can determine the presence of vulnerabilities and prove the feasibility of attacks. This automatic generation process is based on a dynamic software testing method-symbolic execution by (SE)-E-2. We have applied this automatic process to several known vulnerabilities on large-scale open source web applications, and generated the attack strings successfully. Our method is web platform independent, covering PHP, JSP, Rails, and Django due to the supports of the whole system environment of (SE)-E-2.en_US
dc.language.isoen_USen_US
dc.subjectWeb securityen_US
dc.subjectSymbolic executionen_US
dc.subjectAutomatic exploit generationen_US
dc.titleCRAXweb: Automatic Web Application Testing and Attack Generationen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/SERE.2013.26en_US
dc.identifier.journal2013 IEEE 7TH INTERNATIONAL CONFERENCE ON SOFTWARE SECURITY AND RELIABILITY (SERE)en_US
dc.citation.spage208en_US
dc.citation.epage217en_US
dc.contributor.department資訊技術服務中心zh_TW
dc.contributor.departmentInformation Technology Services Centeren_US
dc.identifier.wosnumberWOS:000327102200027-
顯示於類別:會議論文


文件中的檔案:

  1. 000327102200027.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。