完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYang, Keng-Chiehen_US
dc.contributor.authorYang, Connaen_US
dc.contributor.authorChao, Pei-Yaoen_US
dc.contributor.authorShih, Po-Hongen_US
dc.date.accessioned2014-12-08T15:33:17Z-
dc.date.available2014-12-08T15:33:17Z-
dc.date.issued2013en_US
dc.identifier.issn1024-123Xen_US
dc.identifier.urihttp://hdl.handle.net/11536/23170-
dc.identifier.urihttp://dx.doi.org/10.1155/2013/210740en_US
dc.description.abstractAdvanced semiconductor processes are produced by very sophisticated and complex machines. The demand of higher precision for the monitoring system is becoming more vital when the devices are shrunk into smaller sizes. The high quality and high solution checking mechanism must rely on the advanced information systems, such as fault detection and classification (FDC). FDC can timely detect the deviations of the machine parameters when the parameters deviate from the original value and exceed the range of the specification. This study adopts backpropagation neural network model and gray relational analysis as tools to analyze the data. This study uses FDC data to detect the semiconductor machine outliers. Data collected for network training are in three different intervals: 6-month period, 3-month period, and one-month period. The results demonstrate that 3-month period has the best result. However, 6-month period has the worst result. The findings indicate that machine deteriorates quickly after continuous use for 6 months. The equipment engineers and managers can take care of this phenomenon and make the production yield better.en_US
dc.language.isoen_USen_US
dc.titleApplying Artificial Neural Network to Predict Semiconductor Machine Outliersen_US
dc.typeArticleen_US
dc.identifier.doi10.1155/2013/210740en_US
dc.identifier.journalMATHEMATICAL PROBLEMS IN ENGINEERINGen_US
dc.contributor.department經營管理研究所zh_TW
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentInstitute of Business and Managementen_US
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000327986100001-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000327986100001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。