完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Ji-Weien_US
dc.contributor.authorTseng, Judy C. R.en_US
dc.contributor.authorTsai, Wen-Nungen_US
dc.date.accessioned2014-12-08T15:33:22Z-
dc.date.available2014-12-08T15:33:22Z-
dc.date.issued2014en_US
dc.identifier.issn1069-2509en_US
dc.identifier.urihttp://hdl.handle.net/11536/23197-
dc.identifier.urihttp://dx.doi.org/10.3233/ICA-130446en_US
dc.description.abstractLinear text segmentation plays an important role in many natural language processing tasks. Many algorithms have been proposed and shown to improve the performance of linear text segmentation. However, the previous studies often suffer from either lower segmentation accuracy or higher computational complexity. Moreover, parameter setting is another critical problem in some algorithms. Although manual assignment is an approach to solve this problem, it may increase the user's burden, and the parameters provided may not always be suitable to reflect the real metadata of a text. In this paper, a hybrid algorithm, TSHAC-DPSO, is proposed to tackle these problems. A novel linear Text Segmentation algorithm based on Hierarchical Agglomerative Clustering (TSHAC) is proposed to rapidly generate a satisfactory solution without an auxiliary knowledge base, parameter setting, or user involvement; then an efficient evolutional algorithm, Discrete Particle Swarm Optimization (DPSO), is adopted to generate the global optimal solution by refining the solution created by TSHAC. TSHAC-DPSO fully utilizes the merits of both algorithms which not only improve the accuracy of linear text segmentation, but also make the execution more efficient and flexible. The experimental results show that TSHAC-DPSO provides comparable segmentation accuracy with several well-known linear text segmentation algorithms.en_US
dc.language.isoen_USen_US
dc.subjectLinear text segmentationen_US
dc.subjecthierarchical agglomerative clusteringen_US
dc.subjectdiscrete particle swarm optimizationen_US
dc.subjectnatural language processingen_US
dc.titleA hybrid linear text segmentation algorithm using hierarchical agglomerative clustering and discrete particle swarm optimizationen_US
dc.typeArticleen_US
dc.identifier.doi10.3233/ICA-130446en_US
dc.identifier.journalINTEGRATED COMPUTER-AIDED ENGINEERINGen_US
dc.citation.volume21en_US
dc.citation.issue1en_US
dc.citation.spage35en_US
dc.citation.epage46en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000327442400004-
dc.citation.woscount0-
顯示於類別:期刊論文