完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLai, Hsin-Yien_US
dc.contributor.authorChen, You-Yinen_US
dc.contributor.authorLin, Sheng-Huangen_US
dc.contributor.authorLo, Yu-Chunen_US
dc.contributor.authorTsang, Sinyen_US
dc.contributor.authorChen, Shin-Yuanen_US
dc.contributor.authorZhao, Wan-Tingen_US
dc.contributor.authorChao, Wen-Hungen_US
dc.contributor.authorChang, Yao-Chuanen_US
dc.contributor.authorWu, Robbyen_US
dc.contributor.authorShih, Yen-Yu I.en_US
dc.contributor.authorTsai, Sheng-Tsungen_US
dc.contributor.authorJaw, Fu-Shanen_US
dc.date.accessioned2014-12-08T15:33:36Z-
dc.date.available2014-12-08T15:33:36Z-
dc.date.issued2011-06-01en_US
dc.identifier.issn1741-2560en_US
dc.identifier.urihttp://dx.doi.org/10.1088/1741-2560/8/3/036003en_US
dc.identifier.urihttp://hdl.handle.net/11536/23278-
dc.description.abstractAutomatic spike sorting is a prerequisite for neuroscience research on multichannel extracellular recordings of neuronal activity. A novel spike sorting framework, combining efficient feature extraction and an unsupervised clustering method, is described here. Wavelet transform (WT) is adopted to extract features from each detected spike, and the Kolmogorov-Smirnov test (KS test) is utilized to select discriminative wavelet coefficients from the extracted features. Next, an unsupervised single linkage clustering method based on grey relational analysis (GSLC) is applied for spike clustering. The GSLC uses the grey relational grade as the similarity measure, instead of the Euclidean distance for distance calculation; the number of clusters is automatically determined by the elbow criterion in the threshold-cumulative distribution. Four simulated data sets with four noise levels and electrophysiological data recorded from the subthalamic nucleus of eight patients with Parkinson's disease during deep brain stimulation surgery are used to evaluate the performance of GSLC. Feature extraction results from the use of WT with the KS test indicate a reduced number of feature coefficients, as well as good noise rejection, despite similar spike waveforms. Accordingly, the use of GSLC for spike sorting achieves high classification accuracy in all simulated data sets. Moreover, J-measure results in the electrophysiological data indicating that the quality of spike sorting is adequate with the use of GSLC.en_US
dc.language.isoen_USen_US
dc.titleAutomatic spike sorting for extracellular electrophysiological recording using unsupervised single linkage clustering based on grey relational analysisen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/1741-2560/8/3/036003en_US
dc.identifier.journalJOURNAL OF NEURAL ENGINEERINGen_US
dc.citation.volume8en_US
dc.citation.issue3en_US
dc.citation.epageen_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000291035100015-
dc.citation.woscount4-
顯示於類別:期刊論文


文件中的檔案:

  1. 000291035100015.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。